A Polynomial Invariant for Flat Virtual Links

Mathematics – Geometric Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages, LaTeX document, 4 figures

Scientific paper

This paper gives a polynomial invariant for flat virtual links. In the case of one component, the polynomial specializes to Turaev's virtual string polynomial. We show that Turaev's polynomial has the property that it is non-zero precisely when there is no filamentation of the knot, as described by Hrencecin and Kauffman. Schellhorn has provided a version of filamentations for flat virtual links. Our polynomial has the property that if there is a filamentation, then the polynomial is 0. The converse fails, although if the polynomial is 0, then it turns out to be easy to determine if there is a filamentation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A Polynomial Invariant for Flat Virtual Links does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A Polynomial Invariant for Flat Virtual Links, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Polynomial Invariant for Flat Virtual Links will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-87097

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.