Mathematics – Rings and Algebras
Scientific paper
2010-03-25
Mathematics
Rings and Algebras
22 pages, Advances in Applied Mathematics, to appear
Scientific paper
A sectionally complemented modular lattice L is coordinatizable if it is isomorphic to the lattice L(R) of all principal right ideals of some von Neumann regular (not necessarily unital) ring R. We say that L has a large 4-frame if it has a homogeneous sequence (a_0,a_1,a_2,a_3) such that the neutral ideal generated by a_0 is L. J\'onsson proved in 1962 that if L has a countable cofinal sequence and a large 4-frame, then it is coordinatizable; whether the cofinal sequence assumption could be dispensed with was left open. We solve this problem by finding a non-coordinatizable sectionally complemented modular lattice L with a large 4-frame; it has cardinality aleph one. Furthermore, L is an ideal in a (necessarily coordinatizable) complemented modular lattice with a spanning 5-frame. Our proof uses Banaschewski functions. A Banaschewski function on a bounded lattice L is an antitone self-map of L that picks a complement for each element of L. In an earlier paper, we proved that every countable complemented modular lattice has a Banaschewski function. We prove that there exists a unit-regular ring R of cardinality aleph one and index of nilpotence 3 such that L(R) has no Banaschewski function.
No associations
LandOfFree
A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-556988