A noise-controlled dynamic bifurcation

Nonlinear Sciences – Adaptation and Self-Organizing Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Plain Tex, 10 pages, 2 postscript figures included

Scientific paper

We consider a slow passage through a point of loss of stability. If the passage is sufficiently slow, the dynamics are controlled by additive random disturbances, even if they are extremely small. We derive expressions for the `exit value' distribution when the parameter is explicitly a function of time and the dynamics are controlled by additive Gaussian noise. We derive a new expression for the small correction introduced if the noise is coloured (exponentially correlated). There is good agreement with results obtained from simulation of sample paths of the appropriate stochastic differential equations. Multiplicative noise does not produce noise-controlled dynamics in this fashion.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A noise-controlled dynamic bifurcation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A noise-controlled dynamic bifurcation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A noise-controlled dynamic bifurcation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-447076

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.