Computer Science
Scientific paper
Sep 1994
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1994metic..29..673p&link_type=abstract
Meteoritics (ISSN 0026-1114), vol. 29, no. 5, p. 673-682
Computer Science
9
Aluminum Silicates, Calcium, Carbonaceous Chondrites, Crystallization, Crystals, Melts (Crystal Growth), Meteoritic Composition, Titanium, Crystallography, Electron Microscopy, Graphs (Charts), Tables (Data), Textures
Scientific paper
A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed 'UNK,' is Ca3Ti(Al,Ti)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystal oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic UNK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti(7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAIs, although glass, which is typically associated with synthetic UNK, is not observed in the meteoritic occurrences. A low Ti end-member of UNK ('Si-UNK') with a composition near that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.
Barber David J.
Beckett John R.
Paque Julie M.
Stolper Edward M.
No associations
LandOfFree
A new titanium-bearing calcium aluminosilicate phase. 1: Meteoritic occurrences and formation in synthetic systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A new titanium-bearing calcium aluminosilicate phase. 1: Meteoritic occurrences and formation in synthetic systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A new titanium-bearing calcium aluminosilicate phase. 1: Meteoritic occurrences and formation in synthetic systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1791604