A new proof of the graph removal lemma

Mathematics – Combinatorics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages

Scientific paper

Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n^h) copies of H can be made H-free by removing o(n^2) edges. We give a new proof which avoids Szemer\'edi's regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A new proof of the graph removal lemma does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A new proof of the graph removal lemma, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A new proof of the graph removal lemma will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-367504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.