A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications

Computer Science – Data Structures and Algorithms

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

A pair of unit clauses is called conflicting if it is of the form $(x)$, $(\bar{x})$. A CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting unit clauses. Lieberherr and Specker (J. ACM 28, 1981) showed that for each UCF CNF formula with $m$ clauses we can simultaneously satisfy at least $\pp m$ clauses, where $\pp =(\sqrt{5}-1)/2$. We improve the Lieberherr-Specker bound by showing that for each UCF CNF formula $F$ with $m$ clauses we can find, in polynomial time, a subformula $F'$ with $m'$ clauses such that we can simultaneously satisfy at least $\pp m+(1-\pp)m'+(2-3\pp)n"/2$ clauses (in $F$), where $n"$ is the number of variables in $F$ which are not in $F'$. We consider two parameterized versions of MAX-SAT, where the parameter is the number of satisfied clauses above the bounds $m/2$ and $m(\sqrt{5}-1)/2$. The former bound is tight for general formulas, and the later is tight for UCF formulas. Mahajan and Raman (J. Algorithms 31, 1999) showed that every instance of the first parameterized problem can be transformed, in polynomial time, into an equivalent one with at most $6k+3$ variables and $10k$ clauses. We improve this to $4k$ variables and $(2\sqrt{5}+4)k$ clauses. Mahajan and Raman conjectured that the second parameterized problem is fixed-parameter tractable (FPT). We show that the problem is indeed FPT by describing a polynomial-time algorithm that transforms any problem instance into an equivalent one with at most $(7+3\sqrt{5})k$ variables. Our results are obtained using our improvement of the Lieberherr-Specker bound above.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-448949

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.