Mathematics – Differential Geometry
Scientific paper
2011-03-20
Mathematics
Differential Geometry
23 pages
Scientific paper
By improving the analysis developed in the study of $\s_k$-Yamabe problem, we prove in this paper that the De Lellis-Topping inequality is true on 3-dimensional Riemannian manifolds of nonnegative scalar curvature. More precisely, if $(M^3, g)$ is a 3-dimensional closed Riemannian manifold with non-negative scalar curvature, then \[\int_M |Ric-\frac{\bar R} 3 g|^2 dv (g)\le 9\int_M |Ric-\frac{R} 3 g|^2dv(g), \] where $\bar R=vol (g)^{-1} \int_M R dv(g)$ is the average of the scalar curvature $R$ of $g$. Equality holds if and only if $(M^3,g)$ is a space form. We in fact study the following new conformal invariant \[\ds \widetilde Y([g_0]):=\sup_{g\in {\cal C}_1([g_0])}\frac {\ds vol(g)\int_M \s_2(g) dv(g)} {\ds (\int_M \s_1(g) dv(g))^2}, \] where ${\cal C}_1([g_0]):=\{g=e^{-2u}g_0\,|\, R>0\}$ and prove that $\widetilde Y([g_0])\le 1/3$, which implies the above inequality.
Ge Yuxin
Wang Guofang
No associations
LandOfFree
A new conformal invariant on 3-dimensional manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A new conformal invariant on 3-dimensional manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A new conformal invariant on 3-dimensional manifolds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-695248