Mathematics – Analysis of PDEs
Scientific paper
2010-03-10
Mathematics
Analysis of PDEs
19 pages
Scientific paper
In this paper we study the asymptotic behavior of the principal eigenvalues
associated to the Pucci operator in bounded domain $\Omega$ with Neumann/Robin
boundary condition i.e. $\partial_n u=\alpha u$ when $\alpha$ tends to
infinity. This study requires Lipschitz estimates up to the boundary that are
interesting in their own rights.
Birindelli Isabeau
Patrizi Stefania
No associations
LandOfFree
A Neumann eigenvalue problem for fully nonlinear operators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Neumann eigenvalue problem for fully nonlinear operators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Neumann eigenvalue problem for fully nonlinear operators will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-342099