Mathematics – Differential Geometry
Scientific paper
2011-03-15
Mathematics
Differential Geometry
14 pages
Scientific paper
A Riemannian manifold M with an integrable almost product structure P is called a Riemannian product manifold. Our investigations are on the manifolds (M; P; g) of the largest class of Riemannian product manifolds, which is closed with respect to the group of conformal transformations of the metric g. This class is an analogue of the class of locally conformal Kahler manifolds in almost Hermitian geometry. In the present paper we study a natural connection D on (M; P; g) (i.e. DP = Dg = 0). We find necessary and suffcient conditions the curvature tensor of D to have properties similar to the Kahler tensor in Hermitian geometry. We pay attention to the case when D has a parallel torsion.We establish that the Weyl tensors for the connection D and the Levi-Civita connection coincide as well as the invariance of the curvature tensor of D with respect to the usual conformal transformation. We consider the case when D is a at connection. We construct an example of the considered manifold by a Lie group where D is a at connection with non-parallel torsion.
No associations
LandOfFree
A natural connection on a basic class of Riemannian product manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A natural connection on a basic class of Riemannian product manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A natural connection on a basic class of Riemannian product manifolds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-139018