Astronomy and Astrophysics – Astrophysics
Scientific paper
2000-12-08
Astronomy and Astrophysics
Astrophysics
Accepted for publication in Part I of The Astrophysical Journal; 33 pages, 5 figures
Scientific paper
10.1086/320081
We use the ultraviolet and optical WFPC2 and near-infrared NICMOS images of the Hubble Deep Field North to measure and statistically compare an array of parameters for over 250 of the galaxies it contains. These parameters include redshift, rest-frame visible asymmetry and concentration, bolometric luminosity and extinction-corrected star formation rate. We find only one strong correlation, between bolometric luminosity and star formation rate, from which early-type galaxies noticeably deviate. When our asymmetry measurements are combined with those of a sample of nearby galaxies covering the full Hubble sequence, we find a weak correlation between redshift and rest-frame visible asymmetry, consistent with the qualitative evidence of galaxy morphological evolution from these and other deep Hubble Space Telescope images. The mean values of these asymmetry measurements show a monotonic increase with redshift interval over the range 0 < z < 2, increasing by a factor of approximately three. If this trend is real, it suggests that galaxy morphological evolution is a gradual process that is continuing through the present cosmological epoch. There is evidence that the dominant source of this evolution is the "minor" mergers of disk galaxies with smaller companions, which could also transform late-type spiral galaxies into early-type spiral galaxies. Interestingly, in contrast to local galaxies we find no correlations between star formation rate and either UV or visible asymmetry. This could arise if the star formation of high-redshift galaxies proceeds in episodes that are short (~ 100 Myr) relative to the time scales over which galaxy mergers produce strong asymmetries (~ 500 Myr), a result suggested by the high star formation rates of Lyman break galaxies.
Corbin Michael R.
Schneider Glenn
Stobie Elizabeth
Thompson Rodger I.
Urban Andrea
No associations
LandOfFree
A Multivariate Analysis of Galaxies in the Hubble Deep Field North does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Multivariate Analysis of Galaxies in the Hubble Deep Field North, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Multivariate Analysis of Galaxies in the Hubble Deep Field North will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-432383