Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2011-12-06
Computer Science
Computer Vision and Pattern Recognition
The International Conference on Imaging for Crime Detection and Prevention (ICDP) (2011)
Scientific paper
We propose in this paper a tracking algorithm which is able to adapt itself to different scene contexts. A feature pool is used to compute the matching score between two detected objects. This feature pool includes 2D, 3D displacement distances, 2D sizes, color histogram, histogram of oriented gradient (HOG), color covariance and dominant color. An offline learning process is proposed to search for useful features and to estimate their weights for each context. In the online tracking process, a temporal window is defined to establish the links between the detected objects. This enables to find the object trajectories even if the objects are misdetected in some frames. A trajectory filter is proposed to remove noisy trajectories. Experimentation on different contexts is shown. The proposed tracker has been tested in videos belonging to three public datasets and to the Caretaker European project. The experimental results prove the effect of the proposed feature weight learning, and the robustness of the proposed tracker compared to some methods in the state of the art. The contributions of our approach over the state of the art trackers are: (i) a robust tracking algorithm based on a feature pool, (ii) a supervised learning scheme to learn feature weights for each context, (iii) a new method to quantify the reliability of HOG descriptor, (iv) a combination of color covariance and dominant color features with spatial pyramid distance to manage the case of object occlusion.
Bremond François
Chau Duc Phu
Thonnat Monique
No associations
LandOfFree
A multi-feature tracking algorithm enabling adaptation to context variations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A multi-feature tracking algorithm enabling adaptation to context variations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A multi-feature tracking algorithm enabling adaptation to context variations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-380489