Mathematics – Probability
Scientific paper
2009-12-07
Mathematics
Probability
Scientific paper
In this paper we outline an approach for analysing random walks on the chambers of buildings. The types of walks that we consider are those which are well adapted to the structure of the building: Namely walks with transition probabilities $p(c,d)$ depending only on the Weyl distance $\delta(c,d)$. We carry through the computations for thick locally finite affine buildings of type $\tilde{A}_2$ to prove a local limit theorem for these buildings. The technique centres around the representation theory of the associated Hecke algebra. This representation theory is particularly well developed for affine Hecke algebras, with elegant harmonic analysis developed by Opdam. We give an introductory account of this theory in the second half of this paper.
Parkinson James
Schapira Bruno
No associations
LandOfFree
A local limit theorem for random walks on the chambers of $\tilde{A}_2$ buildings does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A local limit theorem for random walks on the chambers of $\tilde{A}_2$ buildings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A local limit theorem for random walks on the chambers of $\tilde{A}_2$ buildings will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-243751