A Lie algebra for Frölicher groups

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages

Scientific paper

Fr\"olicher spaces form a cartesian closed category which contains the category of smooth manifolds as a full subcategory. Therefore, mapping groups such as C^\infty(M,G) or \Diff(M), but also projective limits of Lie groups are in a natural way objects of that category, and group operations are morphisms in the category. We call groups with this property Fr\"olicher groups. One can define tangent spaces to Fr\"olicher spaces, and in the present article we prove that, under a certain additional assumption, the tangent space at the identity of a Fr\"olicher group can be equipped with a Lie bracket. We discuss an example which satisfies the additional assumption.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A Lie algebra for Frölicher groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A Lie algebra for Frölicher groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Lie algebra for Frölicher groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-106060

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.