Mathematics – Statistics Theory
Scientific paper
2006-11-03
Annals of Statistics 2007, Vol. 35, No. 4, 1559-1575
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.1214/009053606000001604 the Annals of Statistics (http://www.imstat.org/aos/) by the Inst
Scientific paper
10.1214/009053606000001604
We extend the isotonic analysis for Wicksell's problem to estimate a regression function, which is motivated by the problem of estimating dark matter distribution in astronomy. The main result is a version of the Kiefer--Wolfowitz theorem comparing the empirical distribution to its least concave majorant, but with a convergence rate $n^{-1}\log n$ faster than $n^{-2/3}\log n$. The main result is useful in obtaining asymptotic distributions for estimators, such as isotonic and smooth estimators.
Wang Xiao
Woodroofe Michael
No associations
LandOfFree
A Kiefer--Wolfowitz comparison theorem for Wicksell's problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Kiefer--Wolfowitz comparison theorem for Wicksell's problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Kiefer--Wolfowitz comparison theorem for Wicksell's problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-164136