A general halfspace theorem for constant mean curvature surfaces

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3 figures, sign mistakes at the beginning of Section 6 are corrected

Scientific paper

In this paper, we prove a general halfspace theorem for constant mean curvature surfaces. Under certain hypotheses, we prove that, in an ambient space M^3, any constant mean curvature H_0 surface on one side of a constant mean curvature H_0 surface \Sigma_0 is an equidistant surface to \Sigma_0. The main hypotheses of the theorem are that \Sigma_0 is parabolic and the mean curvature of the equidistant surfaces to \Sigma_0 evolves in a certain way.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A general halfspace theorem for constant mean curvature surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A general halfspace theorem for constant mean curvature surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A general halfspace theorem for constant mean curvature surfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-599333

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.