Computer Science – Distributed – Parallel – and Cluster Computing
Scientific paper
2006-03-28
Computer Science
Distributed, Parallel, and Cluster Computing
11 pages, 8 figures; to be published in IEEE DSN 2006
Scientific paper
In recent years, many DHT-based P2P systems have been proposed, analyzed, and certain deployments have reached a global scale with nearly one million nodes. One is thus faced with the question of which particular DHT system to choose, and whether some are inherently more robust and scalable. Toward developing such a comparative framework, we present the reachable component method (RCM) for analyzing the performance of different DHT routing systems subject to random failures. We apply RCM to five DHT systems and obtain analytical expressions that characterize their routability as a continuous function of system size and node failure probability. An important consequence is that in the large-network limit, the routability of certain DHT systems go to zero for any non-zero probability of node failure. These DHT routing algorithms are therefore unscalable, while some others, including Kademlia, which powers the popular eDonkey P2P system, are found to be scalable.
Bridgewater Jesse S. A.
Kong Joseph S.
Roychowdhury Vwani P.
No associations
LandOfFree
A General Framework for Scalability and Performance Analysis of DHT Routing Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A General Framework for Scalability and Performance Analysis of DHT Routing Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A General Framework for Scalability and Performance Analysis of DHT Routing Systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-585832