Computer Science – Data Structures and Algorithms
Scientific paper
2001-03-28
Computer Science
Data Structures and Algorithms
6 pages, 13 figures
Scientific paper
An algorithm is presented that efficiently solves the selection problem: finding the k-th smallest member of a set. Relevant to a divide-and-conquer strategy, the algorithm also partitions a set into small and large valued subsets. Applied recursively, this partitioning results in a sorted set. The algorithm's applicability is therefore much broader than just the selection problem. The presented algorithm is based upon R.W. Floyd's 1964 algorithm that constructs a heap from the bottom-up. Empirically, the presented algorithm's performance appears competitive with the popular quickselect algorithm, a variant of C.A.R. Hoare's 1962 quicksort algorithm. Furthermore, constructing a heap from the bottom-up is an inherently parallel process (processors can work independently and simultaneously on subheap construction), suggesting a performance advantage with parallel implementations. Given the presented algorithm's broad applicability, simplicity, serial performance, and parallel nature, further study is warranted. Specifically, worst-case analysis is an important but still unsolved problem.
No associations
LandOfFree
A Dualheap Selection Algorithm - A Call for Analysis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Dualheap Selection Algorithm - A Call for Analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Dualheap Selection Algorithm - A Call for Analysis will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-659815