Mathematics – Probability
Scientific paper
2010-04-30
Mathematics
Probability
Scientific paper
We give an elementary proof of the celebrated Bichteler-Dellacherie Theorem which states that the class of stochastic processes $S$ allowing for a useful integration theory consists precisely of those processes which can be written in the form $S=M+A$, where $M$ is a local martingale and $A$ is a finite variation process. In other words, $S$ is a good integrator if and only if it is a semi-martingale. We obtain this decomposition rather directly from an elementary discrete-time Doob-Meyer decomposition. By passing to convex combinations we obtain a direct construction of the continuous time decomposition, which then yields the desired decomposition. As a by-product of our proof we obtain a characterization of semi-martingales in terms of a variant of \emph{no free lunch}, thus extending a result from [DeSc94].
Beiglböck Mathias
Schachermayer Walter
Veliyev Bezirgen
No associations
LandOfFree
A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-388616