A diffusion mechanism for core-mantle interaction

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12

Scientific paper

Understanding the geochemical behaviour of the siderophile elements - those tending to form alloys with iron in natural environments - is important in the search for a deep-mantle chemical `fingerprint' in upper mantle rocks, and also in the evaluation of models of large-scale differentiation of the Earth and terrestrial planets. These elements are highly concentrated in the core relative to the silicate mantle, but their concentrations in upper mantle rocks are higher than predicted by most core-formation models. It has been suggested that mixing of outer-core material back into the mantle following core formation may be responsible for the siderophile element ratios observed in upper mantle rocks. Such re-mixing has been attributed to an unspecified metal-silicate interaction in the reactive D'' layer just above the core-mantle boundary. The siderophile elements are excellent candidates as indicators of an outer-core contribution to the mantle, but the nature and existence of possible core-mantle interactions is controversial. In light of the recent findings that grain-boundary diffusion of oxygen through a dry intergranular medium may be effective over geologically significant length scales and that grain boundaries can be primary storage sites for incompatible lithophile elements, the question arises as to whether siderophile elements might exhibit similar (or greater) grain-boundary mobility. Here we report experimental results from a study of grain-boundary diffusion of siderophile elements through polycrystalline MgO that were obtained by quantifying the extent of alloy formation between initially pure metals separated by ~1mm of polycrystalline MgO. Grain-boundary diffusion resulted in significant alloying of sink and source particles, enabling calculation of grain-boundary fluxes. Our computed diffusivities were high enough to allow transport of a number of siderophile elements over geologically significant length scales (tens of kilometres) over the age of the Earth. This finding establishes grain-boundary diffusion as a potential fast pathway for chemical communication between the core and mantle.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A diffusion mechanism for core-mantle interaction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A diffusion mechanism for core-mantle interaction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A diffusion mechanism for core-mantle interaction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1544958

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.