Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-09-27
Astronomy and Astrophysics
Astrophysics
8 pages, 16 figures, 2 machine-readable tables, accepted in the Astrophysical Journal
Scientific paper
10.1086/523882
A spectral survey of IRC+10216 has been carried out in the range 11 to 14 um with a spectral resolution of about 4 km s^-1. We have identified a forest of lines in six bands of C2H2 involving the vibrational states from the ground to 3nu5 and in two bands of HCN, involving the vibrational states from the ground up to 2nu2. Some of these transitions are observed also in H13CCH and H13CN. We have estimated the kinetic, vibrational, and rotational temperatures, and the abundances and column densities of C2H2 and HCN between 1 and 300 R* (1.5E16 cm) by fitting about 300 of these ro-vibrational lines. The envelope can be divided into three regions with approximate boundaries at 0.019 arcsec (the stellar photosphere), 0.1 arcsec (the inner dust formation zone), and 0.4 arcsec (outer dust formation zone). Most of the lines might require a large microturbulence broadening. The derived abundances of C2H2 and HCN increase by factors of 10 and 4, respectively, from the innermost envelope outwards. The derived column densities for both C2H2 and HCN are 1.6E19 cm^-2. Vibrational states up to 3000 K above ground are populated, suggesting pumping by near-infrared radiation from the star and innermost envelope. Low rotational levels can be considered under LTE while those with J>20-30 are not thermalized. A few lines require special analysis to deal with effects like overlap with lines of other molecules.
Cernicharo Jose
Fonfria J. P.
Lacy John H.
Richter Matthew Joseph
No associations
LandOfFree
A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-481751