Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2010-03-09
Computer Science
Computer Vision and Pattern Recognition
Proc. National Conference on Recent Trends in Intelligent Computing (ReTIC-06), Nov 17-19, 2006, Kalyani, India, pp. 86-92
Scientific paper
The work presents a comparative assessment of seven different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron (MLP) based classifier. The seven feature sets employed here consist of shadow features, octant centroids, longest runs, angular distances, effective spans, dynamic centers of gravity, and some of their combinations. On experimentation with a database of 3000 samples, the maximum recognition rate of 95.80% is observed with both of two separate combinations of features. One of these combinations consists of shadow and centriod features, i. e. 88 features in all, and the other shadow, centroid and longest run features, i. e. 124 features in all. Out of these two, the former combination having a smaller number of features is finally considered effective for applications related to Optical Character Recognition (OCR) of handwritten Arabic numerals. The work can also be extended to include OCR of handwritten characters of Arabic alphabet.
Basu Subhadip
Das Nibaran
Mollah Ayatullah Faruk
Sarkar Ram
No associations
LandOfFree
A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-455087