A Compact Embedding Theorem for Generalized Sobolev Spaces

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We give an elementary proof of a compact embedding theorem in abstract Sobolev spaces. The result is first presented in a general context and later specialized to the case of degenerate Sobolev spaces defined with respect to nonnegative quadratic forms. Although our primary interest concerns degenerate quadratic forms, our result also applies to nondegener- ate cases, and we consider several such applications, including the classical Rellich-Kondrachov compact embedding theorem and results for the class of s-John domains, the latter for weights equal to powers of the distance to the boundary. We also derive a compactness result for Lebesgue spaces on quasimetric spaces unrelated to Euclidean space and possibly without any notion of gradient.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A Compact Embedding Theorem for Generalized Sobolev Spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A Compact Embedding Theorem for Generalized Sobolev Spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Compact Embedding Theorem for Generalized Sobolev Spaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-148408

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.