Mathematics – Combinatorics
Scientific paper
2011-09-21
Mathematics
Combinatorics
Scientific paper
The number of minimal transitive star factorizations of a permutation was shown by Irving and Rattan to depend only on the conjugacy class of the permutation, a surprising result given that the pivot plays a very particular role in such factorizations. Here, we explain this symmetry and provide a bijection between minimal transitive star factorizations of a permutation \pi having pivot k and those having pivot k'.
No associations
LandOfFree
A combinatorial proof of symmetry among minimal star factorizations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A combinatorial proof of symmetry among minimal star factorizations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A combinatorial proof of symmetry among minimal star factorizations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-261358