Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
1997-03-14
J.Math.Phys. 38 (1997) 5663-5681
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
24 pages, 1 fugure
Scientific paper
10.1063/1.532159
Quantum gauge theory in the connection representation uses functions of holonomies as configuration observables. Physical observables (gauge and diffeomorphism invariant) are represented in the Hilbert space of physical states; physical states are gauge and diffeomorphism invariant distributions on the space of functions of the holonomies of the edges of a certain family of graphs. Then a family of graphs embedded in the space manifold (satisfying certain properties) induces a representation of the algebra of physical observables. We construct a quantum model from the set of piecewise linear graphs on a piecewise linear manifold, and another manifestly combinatorial model from graphs defined on a sequence of increasingly refined simplicial complexes. Even though the two models are different at the kinematical level, they provide unitarily equivalent representations of the algebra of physical observables in separable Hilbert spaces of physical states (their s-knot basis is countable). Hence, the combinatorial framework is compatible with the usual interpretation of quantum field theory.
No associations
LandOfFree
A Combinatorial Approach to Diffeomorphism Invariant Quantum Gauge Theories does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Combinatorial Approach to Diffeomorphism Invariant Quantum Gauge Theories, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Combinatorial Approach to Diffeomorphism Invariant Quantum Gauge Theories will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-497157