Mathematics – Functional Analysis
Scientific paper
2010-04-19
Mathematics
Functional Analysis
18 pages
Scientific paper
An explicit construction of all the homogeneous holomorphic Hermitian vector bundles over the unit disc $\mathbb D$ is given. It is shown that every such vector bundle is a direct sum of irreducible ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over $\mathbb D$, the ones corresponding to operators in the Cowen-Douglas class ${\mathrm B}_n(\mathbb D)$ are identified. The classification of homogeneous operators in ${\mathrm B}_n(\mathbb D)$ is completed using an explicit realization of these operators. We also show how the homogeneous operators in ${\mathrm B}_n(\mathbb D)$ split into similarity classes.
Koranyi Adam
Misra Gadadhar
No associations
LandOfFree
A classification of homogeneous operators in the Cowen-Douglas class does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A classification of homogeneous operators in the Cowen-Douglas class, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A classification of homogeneous operators in the Cowen-Douglas class will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-59146