Mathematics – Mathematical Physics
Scientific paper
Nov 1987
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1987jmp....28.2714b&link_type=abstract
Journal of Mathematical Physics, Volume 28, Issue 11, November 1987, pp.2714-2719
Mathematics
Mathematical Physics
26
Scientific paper
The Lagrange method is used to obtain a class of solutions to the three-dimensional hydrodynamical equations governing the motion of matter with vanishing pressure in its own Newtonian gravitational field. The class is characterized by the property that each fluid particle has constant acceleration. The class contains rotational and irrotational flows. For rotational flows the expansion tensor has one zero eigenvalue, while for irrotational flows it has two zero eigenvalues, which implies that every fluid element contracts or expands in two or one spatial directions, respectively; nevertheless, the density depends on all three coordinates. The general one-dimensional solution is included as a subclass.
Buchert Thomas
Götz Günter
No associations
LandOfFree
A class of solutions for self-gravitating dust in Newtonian gravity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A class of solutions for self-gravitating dust in Newtonian gravity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A class of solutions for self-gravitating dust in Newtonian gravity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1715272