Computer Science – Computational Geometry
Scientific paper
2009-10-10
Computer Science
Computational Geometry
Scientific paper
The concept of \emph{data depth} in non-parametric multivariate descriptive statistics is the generalization of the univariate rank method to multivariate data. \emph{Halfspace depth} is a measure of data depth. Given a set $S$ of points and a point $p$, the halfspace depth (or rank) of $p$ is defined as the minimum number of points of $S$ contained in any closed halfspace with $p$ on its boundary. Computing halfspace depth is NP-hard, and it is equivalent to the Maximum Feasible Subsystem problem. In this paper a mixed integer program is formulated with the big-$M$ method for the halfspace depth problem. We suggest a branch and cut algorithm for these integer programs. In this algorithm, Chinneck's heuristic algorithm is used to find an upper bound and a related technique based on sensitivity analysis is used for branching. Irreducible Infeasible Subsystem (IIS) hitting set cuts are applied. We also suggest a binary search algorithm which may be more numerically stable. The algorithms are implemented with the BCP framework from the \textbf{COIN-OR} project.
Bremner David
Chen Dan
No associations
LandOfFree
A Branch and Cut Algorithm for the Halfspace Depth Problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Branch and Cut Algorithm for the Halfspace Depth Problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Branch and Cut Algorithm for the Halfspace Depth Problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-620539