Astronomy and Astrophysics – Astrophysics
Scientific paper
Jun 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011iaus..274..458b&link_type=abstract
Advances in Plasma Astrophysics, Proceedings of the International Astronomical Union, IAU Symposium, Volume 274, p. 458-460
Astronomy and Astrophysics
Astrophysics
Instabilities, (Magnetohydrodynamics:) Mhd, Plasmas, Sun: Magnetic Fields
Scientific paper
We provide a complete three-dimensional picture of the reconnecting dynamics of a current-sheet. Recently, a two-dimensional non-steady reconnection dynamics has been proved to occur without the presence of any anomalous effect (Lapenta, 2008, Skender & Lapenta, 2010, Bettarini & Lapenta, 2010) but such a picture must be confirmed in a full three-dimensional configuration wherein all instability modes are allowed to drive the evolution of the system, i.e. to sustain a reconnection dynamics or to push the system along a different instability path. Here we propose a full-space analysis allowing us to determine the longitudinal and, possibly, the transversal modes driving the different current-sheet disruption regimes, the corresponding characteristic time-scales and to study system's instability space- parameter (plasma beta, Lundquist and Reynolds numbers, system's aspect ratio). The conditions leading to an explosive evolution rather then to a diffusive dynamics as well as the details of the reconnection inflow/outflow regime at the disruption phase are determined. Such system embedded in a solar-like environment and undergoing a non-steady reconnection evolution may determine the formation both of jets and waves influencing the dynamics and energetic of the upper layers and of characteristic down-flows as observed in the low solar atmosphere.
Bettarini Lapo
Lapenta Giovanni
No associations
LandOfFree
3D turbulent reconnection driven current-sheet dynamics: solar applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with 3D turbulent reconnection driven current-sheet dynamics: solar applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3D turbulent reconnection driven current-sheet dynamics: solar applications will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-918147