Astronomy and Astrophysics – Astrophysics
Scientific paper
2005-10-13
Astronomy and Astrophysics
Astrophysics
14 pages, 15 figures, A&A in press
Scientific paper
10.1051/0004-6361:20053238
We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and testing of the numerical method. We show how far numerical parameters can influence the simulations of gap opening. We study a standard reference model under various numerical approximations. Then we compare the commonly used locally isothermal approximation to the radiation hydro simulation using an equation for the internal energy. Models with different treatments of the mass accretion process are compared. Often mass accumulates in the Roche lobe of the planet creating a hydrostatic atmosphere around the planet. The gravitational torques induced by the spiral pattern of the disk onto the planet are not strongly affected in the average magnitude, but the short time scale fluctuations are stronger in the radiation hydro models. An interesting result of this work lies in the analysis of the temperature structure around the planet. The most striking effect of treating the thermodynamics properly is the formation of a hot pressure--supported bubble around the planet with a pressure scale height of H/R ~ 0.5 rather than a thin Keplerian circumplanetary accretion disk. We also observe an outflow of gas above and below the planet during the gap opening phase.
Klahr Hubert
Kley Willy
No associations
LandOfFree
3D-radiation hydro simulations of disk-planet interactions: I. Numerical algorithm and test cases does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with 3D-radiation hydro simulations of disk-planet interactions: I. Numerical algorithm and test cases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3D-radiation hydro simulations of disk-planet interactions: I. Numerical algorithm and test cases will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-469612