The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Abrasion, Dunes, Dust Storms, Grain Size, Granular Materials, Mars (Planet), Mars Surface, Sands, Sediment Transport, Wind Effects, Quartz Crystals, Simulation, Wind (Meteorology), Weathering

Scientific paper

Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple considerations of material strength versus mechanical work applied to the material, comminution to sub-sand size would be inevitable. Another semi-analytical approach might be taken by considering that the archetypal aeolian sand surface texture is an irregularly pitted ("frosted") surface composed of chipping hollows approximately 10 microns in diameter, 5 microns deep. Their volume = about 250 cubic microns, or about 1/25000 of the volume of a 100 micron diameter dune grain. Because a saltating grain always strikes another grain, then two surfaces are impacted. Thus each grain undergoes two impacts for every one saltation leap, when the impact statistics are considered for a closed dune system (it can be calculated that a grain can never undergo <1 impact, and never >2 per saltation leap). Hence, if we conservatively assume that there is damage to a grain each time it bounces, but with the minimum damage of only 2 microscopic craters per impact, then approximately 12,500 impacts are required to completely eliminate the grain. Of course, it would require only a fraction of this amount to reduce the grain to below sand size. A grain will make only several tens of saltation leaps on the stoss side of a dune before becoming buried on the lee slope. The dune then has to move its full length before the grain is exhumed again for abrasion. Even with this hiatus in transport, it is easy to see that terrestrial dunes need resupplying with sand in order to survive. In recent theoretical work it has been shown that martian aeolian transport may be initiated with high-speed grains, but this converts to a lower energy dynamic transport equilibrium in which a reptation population dominates grain transport (on Earth, at least half of the flux is by reptation and creep). On Mars, therefore, average grain speeds may be lower than those on Earth, or at least comparable. This would permit greater longevity for martian sands, but it would not go far enough to solve the survival problem. It may, however, explain why martian dunes are about the same size as terrestrial dunes. If martian saltation leaps were significantly longer than on Earth (as usually assumed), then a dune's lee slope would have to be correspondingly longer in order to trap the sand; this would scale up the whole dune structure. But with shorter trajectories in a reptation population, larger dunes would be unnecessary. Additional information is contained in the original.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-989737

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.