A unique ultrarefractory inclusion from the Murchison meteorite

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8

Scientific paper

Through freeze-thaw disaggregation of the Murchison meteorite, we have recovered a refractory inclusion, HIB-11, that is unique in terms of its texture, mineral compositions, and bulk composition. It consists of anhedral, Y-rich (1.6 wt% Y2O3) perovskite and lathlike spinel grains enclosed in a matrix of fine-grained, Sc-rich (10.5 wt% Sc2O3 avg.), Ti-rich (12.6 wt% TiO2 avg., reporting all Ti as TiO2) clinopyroxene. The chondrite-normalized rare earth element (REE) pattern is complex, with light REE (LREE) at ˜1Ox C1, abundances increasing from Gd through Ho (the latter at 104x C1), decreasing through Yb at 200x C1, and Lu at ˜400x C1. The pattern reflects several stages of high-temperature volatility fractionation. Removal of Lu and Er from the source gas in the first condensation event was followed by partial to complete removal of the somewhat less refractory heavy REE, Gd through Ho, in the HIB-11 precursors by condensation from the fractionated residual gas in a second event. Both of these events probably reflect condensation of REE into ZrO2 or a mixed Zr-, Sc-, Ti-, Y-oxide at temperatures too high for hibonite stability. A second, lower-temperature component, which was subsequently added, had fractionated (Nd- poor, Ce-rich) LREE abundances that resulted from condensation from a gas that had undergone prior removal of the more refractory LREE, resulting in enrichment in Ce and the most volatile REE, Eu and Yb. The aggregate was then melted and quickly cooled, forming a fine-grained spherule. This is the first reported inclusion in which the two most refractory REE, Lu and Er, are strongly fractionated from the other REE. An absence of mass fractionation among the Ti isotopes indicates that HIB-11 is not an evaporative residue, implying that volatility fractionation of trace elements took place during condensation. The fact that the two most refractory heavy REE could be separated from the other, only slightly less refractory heavy REE suggests that a wide variety of REE patterns is possible, and that ultrarefractory inclusions with other unusual REE patterns, important recorders of nebular condensation, may yet be discovered.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A unique ultrarefractory inclusion from the Murchison meteorite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A unique ultrarefractory inclusion from the Murchison meteorite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A unique ultrarefractory inclusion from the Murchison meteorite will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-972422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.