Computer Science – Information Retrieval
Scientific paper
2012-01-17
IJACSA Vol. 2, No. 6, 2011, pp 63-69
Computer Science
Information Retrieval
7 pages. arXiv admin note: substantial text overlap with arXiv:1002.1144 by other authors without attribution
Scientific paper
The main objective of higher education institutions is to provide quality education to its students. One way to achieve highest level of quality in higher education system is by discovering knowledge for prediction regarding enrolment of students in a particular course, alienation of traditional classroom teaching model, detection of unfair means used in online examination, detection of abnormal values in the result sheets of the students, prediction about students' performance and so on. The knowledge is hidden among the educational data set and it is extractable through data mining techniques. Present paper is designed to justify the capabilities of data mining techniques in context of higher education by offering a data mining model for higher education system in the university. In this research, the classification task is used to evaluate student's performance and as there are many approaches that are used for data classification, the decision tree method is used here. By this task we extract knowledge that describes students' performance in end semester examination. It helps earlier in identifying the dropouts and students who need special attention and allow the teacher to provide appropriate advising/counseling. Keywords-Educational Data Mining (EDM); Classification; Knowledge Discovery in Database (KDD); ID3 Algorithm.
Baradwaj Brijesh Kumar
Pal Saurabh
No associations
LandOfFree
Mining Educational Data to Analyze Students' Performance does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mining Educational Data to Analyze Students' Performance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mining Educational Data to Analyze Students' Performance will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-96635