Mathematics – Logic
Scientific paper
Dec 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006agufm.v23h..08g&link_type=abstract
American Geophysical Union, Fall Meeting 2006, abstract #V23H-08
Mathematics
Logic
1060 Planetary Geochemistry (5405, 5410, 5704, 5709, 6005, 6008), 1212 Earth'S Interior: Composition And State (7207, 7208, 8105, 8124), 1213 Earth'S Interior: Dynamics (1507, 7207, 7208, 8115, 8120), 3630 Experimental Mineralogy And Petrology, 8125 Evolution Of The Earth (0325)
Scientific paper
The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.
Gangopadhyay Anirban
Walker Ray J.
No associations
LandOfFree
Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-963119