Astronomy and Astrophysics – Astrophysics
Scientific paper
Jul 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002a%26a...389..271b&link_type=abstract
Astronomy and Astrophysics, v.389, p.271-285 (2002)
Astronomy and Astrophysics
Astrophysics
25
Stars: Agb And Post-Agb, Stars: Circumstellar Matter, Radio-Lines: Stars, Planetary Nebulae: Individual: Oh 231.8+4.2
Scientific paper
We present high-resolution images obtained with the WFPC2, on board the HST, of the protoplanetary nebula (PPN) OH 231.8+4.2. Hα and NII line emission and scattered light in the continuum at 6750 and 7910 Å were observed. We also discuss NIR NICMOS images from the HST archive. The images show with high accuracy the shape and excitation state of the shocks developed in the nebula. Our high-resolution images (and data from other works) allow a very detailed and quantitative description of the different nebular components and of the physical conditions in them. We interpret specific structures identified in our images using existing models of shock interaction. In the center of the nebula, there is a dense torus- or disk-like condensation continued by an hourglass-like structure, with relatively high densities ( ~ 105-106 cm-3) and temperatures ( ~ 30 K). Inside this torus we have identified the location of the central star, from SiO maser observations. Two shock regions are detected from the optical line emission images, respectively in the north and south lobes. In both regions, a forward and a backward shock are identified. The densities of this hot gas vary between 40 and 250 cm-3, with the densest clumps being placed in the reverse shocks. The total mass of the shocked hot gas is ~ 2x10-3 Msun, both lobes showing similar masses in spite of their different extents. The relatively collimated jet that impinges on an originally slow shell, so producing the shocks, is identified from the scattered light images and in CO maps. This flow is significantly denser and cooler than the shocked Hα regions. Its density decreases with the distance to the star, with typical values ~ 105-104 cm-3, and its temperature ranges between about 25 and 8 K. We explain the high Hα emission of the backward shock assuming that it propagates in a diffuse gas component, entrained by the observed collimated flow and sharing its axial movement. The existence of shocks also in the collimated densest flow is suggested by the high abundance of some molecules like HCO+ and its structure and kinematics in certain regions, but they are not seen in Hα emission, probably because of the absence of (well developed) hot components in this dense flow. We think that the exceptionally detailed and quantitative image derived for the wind interaction regions in OH 231.8+4.2 is a challenge to check and improve hydrodynamical models of wind interaction in PPNe.
Alcolea Javier
Bujarrabal Valentin
Sahai Raghvendra
Sanchez Contreras Carmen
No associations
LandOfFree
HST observations of the protoplanetary nebula OH 231.8+4.2: The structure of the jets and shocks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with HST observations of the protoplanetary nebula OH 231.8+4.2: The structure of the jets and shocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and HST observations of the protoplanetary nebula OH 231.8+4.2: The structure of the jets and shocks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-958856