Mathematics – Functional Analysis
Scientific paper
2010-12-21
Mathematics
Functional Analysis
6 pages, 2 figures, based on talk given at the Second Asian Confernce on Nonlinear Analysis and Optimization, September 9-12,
Scientific paper
The Feichtinger conjecture for exponentials asserts that the following property holds for every fat Cantor subset B of the circle group: the set of restrictions to B of exponential functions can be covered by Riesz sets. In their seminal paper on the Kadison-Singer problem, Bourgain and Tzafriri proved that this property holds if the characteristic function of B has Sobolev regularity. Their probability based proof does not explicitly construct a Riesz cover. They also showed how to construct fat Cantor sets whose characteristic functions have Sobolev regularity. However, these fat Cantor sets are not convenient for numerical calculations. This paper addresses these concerns. It constructs a family of fat Cantor sets, parameterized by their Haar measure, whose characteristic functions have Sobolev regularity and their Fourier transforms are Riesz products. It uses these products to perform computational experiments that suggest that if the measure of one of these fat Cantor sets B is sufficiently close to one, then it may be possible to explicitly construct a Riesz cover for B using the Thue-Morse minimal sequence that arises in symbolic topological dynamics.
No associations
LandOfFree
The Feichtinger Conjecture for Exponentials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Feichtinger Conjecture for Exponentials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Feichtinger Conjecture for Exponentials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-95197