Computer Science
Scientific paper
May 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006sptz.prop30237h&link_type=abstract
Spitzer Proposal ID #30237
Computer Science
Scientific paper
The recent detection of mid-IR emission from the brown dwarf companion to the white dwarf GD1400 (Farihi & Christopher 2005) demonstrates the power of IRAC for characterizing low-mass companions to white dwarf (WD) stars. Compared with GD1400, the close binary system SDSS121209.31+013627.7 (hereafter SDSS1212) is potentially a far more significant target in this effort. SDSS1212 consists of a magnetic WD plus a low-mass companion in a very close (tidally-locked) orbit (a ~ 0.6 Rsun, P ~ 90 mins). The companion shows the effects of irradiation of its atmosphere by the WD, and the tidal lock (and inclination) ensures that we view the illuminated and far-side hemispheres during each orbit. Ground-based, J-band upper limits constrain the companion to be a late-type brown dwarf (L5 or later). Thus, SDSS1212 is an ideal system for studying the atmosphere of a sub-stellar object heated by a strong continuum. Indeed, the total irradiating flux at ~1 Rsun from a T ~ 10,000K WD is comparable to that at r ~ 0.1 AU from a sun-like main sequence star, and SDSS1212 is the only WD + brown dwarf binary whose orbital period is known. Given its importance for the characterization of planetary atmosphere and binary star evolution, we propose to carry out phase-resolved 3.6?8 micron imaging of the SDSS1212 system with the dual goals of: 1) characterizing the orbit-averaged photometric properties of the low-mass companion, and thus discerning its placement within the ever-expanding zoo of substellar objects; and 2) measuring what is expected to be a modulation of up to 0.4 mag in the net mid-IR brightness of the binary, thereby providing an empirical point of comparison for current theoretical efforts to predict the response of "hot Jupiters" to irradiation by their parent stars. Coupled with the exquisite photometric stability of IRAC and the benign environment of Spitzer, this unique target offers an exceptional opportunity to study the effects of irradiation from host stars on their substellar companions.
Hines Dean
Schmidt Gary
No associations
LandOfFree
The Scorched Atmosphere of a Low Mass Star does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Scorched Atmosphere of a Low Mass Star, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Scorched Atmosphere of a Low Mass Star will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-933539