Astronomy and Astrophysics – Astrophysics
Scientific paper
Mar 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007iaus..242..399b&link_type=abstract
Astrophysical Masers and their Environments, Proceedings of the International Astronomical Union, IAU Symposium, Volume 242, p.
Astronomy and Astrophysics
Astrophysics
3
Scientific paper
A determination of the Hubble Constant (H0) to better than 3% would be the best complement to cosmic microwave background (CMB) data to constrain the equation of state of Dark Energy. Water vapor megamasers provide perhaps the best opportunity for measuring direct distances to galaxies out to about 200 Mpc. We have formed a team of astronomers in the Megamaser Cosmology Project to pursue the ambitious goal of making a precise measurement of H0 by measuring such distances using the techniques pioneered on the disk maser in NGC 4258 by Herrnstein et al (1999). In recent surveys we have made significant progress identifying new maser systems analogous to that in NGC 4258, but more distant. Once the appropriate candidates are identified, two types of observations are necessary to ultimately measure a distance: single-dish monitoring to measure the acceleration of gas in the disk, and sensitive VLBI imaging in order to measure the angular size of the disk, measure the rotation curve, and model radial displacement of the systemic maser features. We have recently obtained preliminary VLBI maps of the masers in two systems, NGC 6323 and UGC 3789. The maser disks in both galaxies were discovered and monitored with the Green Bank Telescope (GBT) and subsequently imaged with the High Sensitivity Array (VLBA + GBT + Effelsberg). In this contribution we present a map of the maser distribution in one of those systems, NGC 6323. The map demonstrates that pc-scale maser disks as distant as ~ 100 Mpc can be imaged with existing telescopes. Results on UGC 3789 will be presented in a later publication.
Braatz James
Condon James J.
Greenhill Lincoln
Henkel Carsten
Lo Kwok Yung
No associations
LandOfFree
Precision cosmology with H2O megamasers: progress in measuring distances to galaxies in the Hubble flow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Precision cosmology with H2O megamasers: progress in measuring distances to galaxies in the Hubble flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precision cosmology with H2O megamasers: progress in measuring distances to galaxies in the Hubble flow will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-922719