Stratospheric superrotation in the TitanWRF model

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

TitanWRF general circulation model simulations performed without sub-grid-scale horizontal diffusion of momentum produce roughly the observed amount of superrotation in Titan's stratosphere. We compare these results to Cassini-Huygens measurements of Titan's winds and temperatures, and predict temperature and winds at future seasons. We use angular momentum and transformed Eulerian mean diagnostics to show that equatorial superrotation is generated during episodic angular momentum 'transfer events' during model spin-up, and maintained by similar (yet shorter) events once the model has reached steady state. We then use wave and barotropic instability analysis to suggest that these transfer events are produced by barotropic waves, generated at low latitudes then propagating poleward through a critical layer, thus accelerating low latitudes while decelerating the mid-to-high latitude jet in the late fall through early spring hemisphere. Finally, we identify the dominant waves responsible for the transfers of angular momentum close to northern winter solstice during spin-up and at steady state. Problems with our simulations include peak latitudinal temperature gradients and zonal winds occurring ˜60 km lower than observed by Cassini CIRS, and no reduction in zonal wind speed around 80 km, as was observed by Huygens. While the latter may have been due to transient effects (e.g. gravity waves), the former suggests that our low (˜420 km) model top is adversely affecting the circulation near the jet peak, and/or that we require active haze transport in order to correctly model heating rates and thus the circulation. Future work will include running the model with a higher top, and including advection of a haze particle size distribution.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Stratospheric superrotation in the TitanWRF model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Stratospheric superrotation in the TitanWRF model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stratospheric superrotation in the TitanWRF model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-918208

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.