Astronomy and Astrophysics – Astrophysics
Scientific paper
Feb 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003spie.4853..542z&link_type=abstract
Innovative Telescopes and Instrumentation for Solar Astrophysics. Edited by Stephen L. Keil, Sergey V. Avakyan . Proceedings o
Astronomy and Astrophysics
Astrophysics
Scientific paper
This paper introduces our control software design for a tracing system of precise pointing on a balloon-borne telescope to observe the active details on the solar surface. The telescope is an equatorial one with 80 cm in diameter. Borne by balloon, it works at 30 km above the sea level so as to get rid of the image disturbance due to atmosphere. The system contains three parts: basket control, telescope control and tip-tilt control. For telescope control, the crude sensors for pointing detection are two rotating transformers, while the fine sensors two linear CCDs which produce the error signals of pointing. An inserted-type industry-control computer PC104 completes the position close-loop and then drives the servo amplifiers to carry out pointing, searching and tracing automatically. Due to the fact that the position control loop is closed with an improved digital PID arithmetic, the adjustment of the telescope may respond rapidly, therefore the telescope can precisely follow the Sun on the balloon. Simulation test shows that the tracing accuracy may reach as high as 4" (RMS).
Wang Jianing
Zhu Dan
No associations
LandOfFree
Software design for a balloon-borne solar telescope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Software design for a balloon-borne solar telescope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Software design for a balloon-borne solar telescope will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-917177