Space Weather Research at IAA/NOA: Solar Energetic Particle Investigations

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

During an eleven year cycle the Sun goes from quiet conditions at minimum to levels of high activity at maximum. In the latter case, energetic phenomena such as coronal mass ejections (CMEs) and solar flares (SFs) accompanied by explosive releases of mass, magnetic flux and solar energetic particles (SEPs) are common. Damaging effects, as a result of these phenomena, have been recorded on satellites, on-board detectors and in extreme cases on ground based systems (e.g. oil and natural gas pipelines, communication systems, aircraft electronics, power-grids). Furthermore, the intense SEP radiation can damage human DNA and cause cell replications. To this end, ensuring the safety of astronauts working in the extreme conditions of space, especially the energetic particle environments, is a key goal for both ESA and NASA. The analysis, the risk assessment and management and the possible forecasting of such events constitutes the scientific field of Space Weather. The Institute of Astronomy and Astrophysics (IAA) of the National Observatory of Athens (NOA) is currently strongly involved in two collaborative projects funded by the seventh framework program of the European Union,
namely: 'SEPServer' and 'COMESEP'. 'SEPServer' focuses on the implementation of a comprehensive and up to date SEP analysis service including scientific data driven analysis both for 1 AU and for > 1 AU using data from the SOHO/ ERNE, SOHO/EPHIN, ACE/EPAM, ACE/SIS, WIND/3DP, Ulysses/HISCALE, Ulysses/COSPIN/LET and Ulysses/COSPIN/KET experiments. SEPServer will also provide for the first time the release of the HELIOS data set in a reasonable format and in full time resolution, thus making available data also for orbits inside 1 AU (down to 0.3 AU). Observational data-driven analysis methods such as: onset determination, velocity dispersion, and/or time-shifting analysis, direct comparison of observed SEP fluxes, spectra and abundance ratios with the associated electromagnetic emission data will be applied. 'SEPServer' will enhance our understanding of the source, acceleration and transport of SEPs which is directly related to space weather research progress. 'COMESEP' sets out to develop tools for forecasting SEP radiation storms and geomagnetic storms based on scientific data analysis and extensive modeling. It is foreseen that these forecasting tools will be incorporated into an automated operational European Space Weather Alert system, which is the 'COMESEP' primary goal. Basic research activities on Space Weather carried out at IAA/NOA within the framework of these two projects will be presented including the analysis of SEPs and the associated electromagnetic emissions for selected case studies, the detailed study of the so-called 'reservoir effect' in the heliosphere as well as the impact of the large-scale structure of the IMF on the SEP profiles and its space weather implications. These project-related activities will provide the basis for future solar missions such as Solar Orbiter - in which IAA/NOA participates as a Co-Investigator (EPD instrument).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Space Weather Research at IAA/NOA: Solar Energetic Particle Investigations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Space Weather Research at IAA/NOA: Solar Energetic Particle Investigations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Space Weather Research at IAA/NOA: Solar Energetic Particle Investigations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-910844

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.