Astronomy and Astrophysics – Astrophysics
Scientific paper
Oct 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004a%26a...425..641c&link_type=abstract
Astronomy and Astrophysics, v.425, p.641-648 (2004)
Astronomy and Astrophysics
Astrophysics
11
Stars: Fundamental Parameters, Stars: Individual: Hr 6000, Stars: Chemically Peculiar, Stars: Atmospheres, Stars: Abundances
Scientific paper
Although the importance of a correct abundance assumption in the determination of effective temperature and surface gravity of a star has been demonstrated in the literature, this determination is often still extremely simplified, neglecting the effects of non-solar chemical abundances. In this paper we show how the modeling of the profiles of Hδ and Hγ, commonly used as T_eff and log g indicators, is affected when the chemical composition is far from the standard one. As a target for our study we selected the chemically peculiar star HR 6000. Comparing the observed and synthetic profiles of Hδ and Hγ we obtained T_eff = 12 950 K and log g = 4.05; the atmospheric model has been computed with a metal opacity scale evaluated for [M/H] = -0.5 and He/H = 0. A number of Fe II lines have been used to infer the rotational velocity (ve sin i = 0 km s-1) and the heliocentric radial velocity (RV = 0.67 km s-1). By requiring that the abundance of iron is independent of the 96 measured equivalent widths, we determined the microturubulence velocity (ξ = 0 km s-1). The abundance pattern coming from our study is similar to the one inferred from UV lines by Castelli et al. (\cite{castelli85}), with the exception of O, Al, Si, Sc and Ni. Possible causes for these descrepancies are discussed. With respect to the Sun, we found the iron peak elements to be normal or overabundant and the light elements, with the exception of Na and P, to be extremely underabundant. We find that HR 6000 is one of the most He-underabundant among the chemically peculiar stars.
Based on observations collected at European Southern Observatory (ESO), La Silla, Chile, proposal ID 69.D-0537.
Catanzaro Giovanni
Dall Thomas H.
Leone Francesco
No associations
LandOfFree
Balmer lines as Teff and log g indicators for non-solar composition atmospheres. An application to the extremely helium-weak star HR 6000 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Balmer lines as Teff and log g indicators for non-solar composition atmospheres. An application to the extremely helium-weak star HR 6000, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balmer lines as Teff and log g indicators for non-solar composition atmospheres. An application to the extremely helium-weak star HR 6000 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-895021