Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Scientific paper

Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by a variety of techniques to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W = 90%, Ni = 6%, Cu = 4%) to further ensure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are >50% Fe+2 in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of sizes (˜50-100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) and as the magnetites in Martian meteorite Allan Hills (ALH) 84001. Fritz et al. (2005) previously concluded that ALH 84001 experienced ˜32 GPa pressure and a resultant thermal pulse of ˜100-110 °C. However, ALH 84001 contains evidence of local temperature excursions high enough to melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to > 470 °C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH 84001 could be a product of shock devolatilization of siderite as well.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-884052

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.