Optical Detection of Anomalous Nitrogen in Comets

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

VLT Opens New Window towards Our Origins
Summary
A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January.
As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular.
The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR.
Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism.
The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles .
The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These studies will provide crucial information about the detailed composition of a much larger number of comets than hitherto possible and hence, more information about the primordial matter from which the solar system formed.
A better understanding of the origins of the cometary material (in particular the HCN and CN molecules [3]) and the connection with heavier organic molecules is highly desirable. This is especially so in view of the probable rôle of comets in bringing to the young Earth materials essential for the subsequent formation of life on our planet .
PR Photo 28a/03 : Comet LINEAR (C/2000 WM1) - direct image and UVES slit position. PR Photo 28b/03 : Part of the UVES spectrum of Comet LINEAR (C/2000 WM1) with CN-band. PR Photo 28c/03 : Identification of nitrogen-15 in the spectrum. Cometary material
Knowledge of the abundance of the stable isotopes [2] of the light elements in different solar system objects provides critical clues to the origin and early evolution of these objects and of the system as a whole.
In order to gain the best possible insight into the origins and formation of the niche in which we live, it is therefore important to determine such isotopic abundance ratios in as many members of the solar family as possible. This is particularly true for comets, believed to be carriers of well-preserved specimens of the pristine material from which the solar system was made, some 4,600 million years ago.
However, the detailed study of cometary material is a difficult task. Measurements of isotopic ratios is an especially daunting undertaking, mainly because of the extreme weakness of the spectral signatures (emissions) of the less abundant species like carbon-13, nitrogen-15, etc..
Measurements of microwave emission from those atoms suffer from additional, inherent uncertainties connected to the much stronger emission of the more abundant species. Measurements in the optical spectral region thus take on particular importance in this context. However, it is exceedingly difficult to procure the high-quality, high-resolution spectra needed to show the very faint emissions of the rare species.
So far, they were only possible when a very bright comet happened to pass by, perhaps once a decade, thereby significantly limiting such studies. And there has always been some doubt whether the brightest comets are also truly representative of this class of objects.
Observations of fainter, more typical comets had to await the advent of powerful instruments and telescopes. First UVES spectrum of a comet
ESO PR Photo 28a/03
ESO PR Photo 28a/03
[Preview - JPEG: 495 x 400 pix - 183k [Normal - JPEG: 990 x 800 pix - 450k]
ESO PR Photo 28b/03
ESO PR Photo 28b/03
[Preview - JPEG: 502 x 400 pix - 115k [Normal - JPEG: 1004 x 800 pix - 290K]
Captions : PR Photo 28a/03 displays an image of Comet LINEAR (C/2000 WM1) with the UVES slit viewer image. The colour composite in the large frame (sky field: 16 x 16 arcmin 2 ) was obtained by Gordon Garradd (Loomberah, NSW, Australia). [Image Copyright (c) 2002 Gordon Garradd (loomberah@ozemail.com.au]. The UVES slit viewer photo (small frame; 40 x 40 arcsec 2 ) is a false-colour image taken in the (red) R-band with UVES+KUEYEN on March 22, 2002; it shows the position of the narrow spectrograph slit (0.45 arcsec wide and 8 arcsec long) crossing the inner coma and through which the comet's light was captured to produce the high-resolution spectra. The slit has been offset from the center of light to reduce contamination from solar light reflected off dust particles in the comet's coma - there is most dust near the nucleus. PR Photo 28b/03 shows a small part of the UVES spectrum with an emission band (ultraviolet light at wavelength 390 nm) from CN molecules [3] in the comet's atmosphere. The emission lines are produced by absorption of the solar light by these molecules, followed by re-emission of lines of specific wavelengths. This physical process is known as "resonance-fluorescence" - it is the same process that causes glowing teeth and shirts in a Disco. The upper panel displays the "raw" spectrum; the lower is the "extracted" spectrum, now clearly displaying the individual emission lines.
Observations of Comet LINEAR (C/2000 WM1) were carried out with the UV-Visual Echelle Spectrograph (UVES) mounted on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile) on four occasions during March 2002. At that time, the comet had moved past its perihelion and was by far the faintest comet for which such a detailed spectral analysis had ever been attempted.
A number of 25-min exposures were secured, resulting in a total observing time of about 4 hours. The final spectrum covers the entire visual region (330 - 670 nm) and is one of the most detailed and information-rich cometary spectra ever obtained. PR Photo 28b/03 displays a small part of this spectrum.
These observations are the first high resolution spectra of a comet taken with the VLT. Identification of nitrogen-15
ESO PR Photo 28c/03
ESO PR Photo 28c/03
[Preview - JPEG: 400 x 524 pix - 109k [Normal - JPEG: 800 x 1047 pix - 285k]
Captions : PR Photo 28c/03 is an enlarged view of a small section of the high-resolution UVES spectrum of Comet LINEAR ( PR Photo 28b/03 ) with emission lines from CN-molecules (blue line), compared to the "synthetic" spectrum based on theoretical calculations and laboratory measurements (black line ; some of the lines are labeled with quantum numbers). In the upper panel, the synthetic spectrum has been produced on the basis of the most abundant isotopic species ( 12 C 14 N). The lower panel shows that the observed spectrum is in nearly perfect agreement with a synthetic spectrum which includes contributions from two other isotopic species, 13 C 14 N (emission lines at wavelengths indicated by red ticks) and 12 C 15 N (blue ticks); they are added in proportions of 1/115 and 1/140, respectively. The isotopic abundances of carbon-13 and nitrogen-15 are measured accordingly. Introducing instead the terrestrial ratio for nitrogen-15 (1/272) significantly degrades the fit and thus tha

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Optical Detection of Anomalous Nitrogen in Comets does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Optical Detection of Anomalous Nitrogen in Comets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical Detection of Anomalous Nitrogen in Comets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-879120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.