Astronomy and Astrophysics – Astrophysics
Scientific paper
Dec 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003chjaa...3..555l&link_type=abstract
Chinese Journal of Astronomy & Astrophysics, Vol. 3, No. 6, p. 555-562
Astronomy and Astrophysics
Astrophysics
14
Sun: Magnetic Fields, Sun: Coronal Mass Ejections (Cmes), Methods: Numerical
Scientific paper
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope. This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.
Hu You-Qiu
Li Guo-Qiang
No associations
LandOfFree
Magnetic Energy of Force-Free Fields with Detached Field Lines does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Magnetic Energy of Force-Free Fields with Detached Field Lines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic Energy of Force-Free Fields with Detached Field Lines will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-878386