The rotation-activity correlation among G and K giants in binary systems

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Stars: Activity, Stars: Coronae, Stars: Evolution, Stars: Late-Type, X-Rays: Stars

Scientific paper

Aims:The present study aims (i) to test the existence of a correlation between magnetic activity and rotation among G and K giants in binary systems and (ii) to test whether parameters other than rotation play a role in determining the X-ray emission level of intermediate-mass giants. Methods: The method consists in testing the existence of correlations between measured stellar parameters including the X-ray surface flux, rotation period, Rossby number and surface gravity of a sample of G and K giants with masses included between 1.5 M_&sun; and 3.8 M_&sun;. Results: I found evidence that the X-ray surface flux FX of intermediate-mass G and K giants is correlated with their rotation period P as previously observed on single G giants. Confidence in the degree of correlation is not higher when the Rossby number is used in place of the rotation period, but it significantly improves when stellar gravity g is taken into account. The empirical relation given by log (F_X) = -0.73 × log (P) + 0.64 × log (g/g&sun;)+ 7.9 differs from the power-law dependence with an index of about -2 between X-ray to bolometric luminosity ratio and the rotation period that is observed for main-sequence stars. The X-ray surface flux of single G giants and of intermediate-mass G and K giants in close binary systems, such as RS CVn systems, also depends on the stellar gravity. This dependence could result from the effect of gravity on the electron density and emission measure of the X-ray emitting plasmas, as well as on the characteristic sizes of coronal magnetic loops. The measured X-ray surface-flux dependence on gravity is, however, not as steep as the one predicted by simple models of hydrostatic loops that assume a fixed ratio between the coronal energy losses by thermal conduction and by radiation. Conclusions: .I conclude that (i) a relation exists between the rotation and X-ray activity level in giants, (ii) that this relation is not directly dependent on the presence of a companion and applies to all intermediate-mass giants with either G or K spectral type, and (iii) that gravity is an important stellar parameter in determining the X-ray surface flux of intermediate-mass giants.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The rotation-activity correlation among G and K giants in binary systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The rotation-activity correlation among G and K giants in binary systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The rotation-activity correlation among G and K giants in binary systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-856852

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.