Rotating Halos and Heavy Disks: the Case of NGC 2915

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

NGC 2915 is a blue compact dwarf galaxy embedded in an extended, low surface brightness HI disk with a bar and two-armed spiral structure. Common mechanisms are unable to explain those patterns and disk dark matter or a rotating triaxial dark halo were proposed as alternatives. Hydrodynamical simulations were run for each case and compared to observations using customized column density and kinematic constraints. The spiral structure can be accounted for by an unseen bar or triaxial halo, but the large bar mass or halo pattern frequency required make it unlikely that the spiral is driven by an external perturber. In particular, the spin parameter lambda is much higher than predicted by current CDM structure formation scenarios. Massive disk models show that when the gas surface density is scaled up by a factor of about 10, the disk develops a spiral structure matching the observed one in perturbed density as well as velocity. This suggests that the disk of NGC 2915 contains much more mass than is visible tightly linked to the neutral hydrogen. A classic (quasi-)spherical halo is nevertheless still required, as increasing the disk mass further to fit the circular velocity curve would make the disk violently unstable

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Rotating Halos and Heavy Disks: the Case of NGC 2915 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Rotating Halos and Heavy Disks: the Case of NGC 2915, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotating Halos and Heavy Disks: the Case of NGC 2915 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-852885

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.