Mathematics – Logic
Scientific paper
Apr 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003eaeja.....7936m&link_type=abstract
EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract #7936
Mathematics
Logic
Scientific paper
To speculate about the geology of Pluto and Charon with currently available data is very risky. It is important to remember that we would anticipate that Ganymede and Callisto might have very similar geologies, given the same level of understanding, as we presently possess for the Pluto system. What little we do know with regards to Pluto and Charon's composition, surface albedo variations, and in combination with a post-Voyager and Galileo appreciation of other outer solar system icy objects, at least establishes a criteria for identifying geological questions we wish to address with the upcoming New Horizons mission to that system. Here we give a few examples. Tectonics: Pluto and Charon's geologic history may have involved periods of internal expansion and/or contraction, perhaps due to a build-up of heat from radiogenic sources, the freeze-expansion of a large internal H2O layer, or changes in ice phases. Global internal expansion would manifest itself of the surfaces of these objects in the form of normal faulting and graben formation causing the surface to split into scarp or graben-bounded polygons. Global compression would form a network of thrust fault ridges. Orbital evolution also may have left tectonic imprints. Volcanics : The Voyager survey of the outer solar system has revealed an astonishing variety of endogenic landforms on the surfaces of icy satellites. If Pluto or Charon exhibit evidence of volcanic activity, such observations can be used to constrain composition and thermal evolutions. On Triton, a possible form of active outgassing, whether from deep or shallow sources is a matter of controversy, was observed in the form of narrow plumes. Alternative models for Tritonian plume genesis can be tested by their occurrence on Pluto. Cratering: The presumed absence of any additional heating other than radiogenic may have resulted in the preservation of older (hence more cratered) terrains on Pluto and Charon than on Triton, which would be a boon to the study of time-varying trans-Neptunian bolide populations. Aeolian Activity: For the "densest case" Plutonian atmosphere (˜50 μbar surface pressure), the saltation threshold wind speed is in the range of maximum theoretical surface wind speeds. The observation of landforms created by saltating particles (e.g., dunes) may provide an indicator of periods of high (>= 50 μbar) atmospheric pressures. This may be an especially useful observation if post-perihelion in situ measurements detect a significantly smaller atmosphere. Looking toward an opportunity to send spacecraft to the Pluto-Charon system has encouraged this speculation regarding geological processes and the implications of their presence/absence on these bodies. Finally we should anticipate observing wholly unexpected features on the surfaces of Pluto and Charon in any initial in situ spacecraft investigation.
McKinnon William B.
Moore Jeffery M.
Pappalardo Robert T.
Schenk Paul M.
No associations
LandOfFree
The "Geology" of Pluto and Charon does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The "Geology" of Pluto and Charon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The "Geology" of Pluto and Charon will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-844009