Mathematics – Classical Analysis and ODEs
Scientific paper
2007-02-09
Mathematics
Classical Analysis and ODEs
37 pages, 6 graphs, 14 full-color phase plots. v3: Added discussion of a fast Hurwitz algorithm; expanded development of the m
Scientific paper
10.1007/s11075-007-9153-8
This paper sketches a technique for improving the rate of convergence of a general oscillatory sequence, and then applies this series acceleration algorithm to the polylogarithm and the Hurwitz zeta function. As such, it may be taken as an extension of the techniques given by Borwein's "An efficient algorithm for computing the Riemann zeta function", to more general series. The algorithm provides a rapid means of evaluating Li_s(z) for general values of complex s and the region of complex z values given by |z^2/(z-1)|<4. Alternatively, the Hurwitz zeta can be very rapidly evaluated by means of an Euler-Maclaurin series. The polylogarithm and the Hurwitz zeta are related, in that two evaluations of the one can be used to obtain a value of the other; thus, either algorithm can be used to evaluate either function. The Euler-Maclaurin series is a clear performance winner for the Hurwitz zeta, while the Borwein algorithm is superior for evaluating the polylogarithm in the kidney-shaped region. Both algorithms are superior to the simple Taylor's series or direct summation. The primary, concrete result of this paper is an algorithm allows the exploration of the Hurwitz zeta in the critical strip, where fast algorithms are otherwise unavailable. A discussion of the monodromy group of the polylogarithm is included.
No associations
LandOfFree
An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-8310