Deuterium-rich Water in Meteorites

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

D/H ratios of 2 meteorites (Renazzo CR and Semarkona LL3), which are known to exhibit the largest departures from the terrestrial hydrogen isotopic ratios, have been determined with the CRPG Nancy ion-microprobe. Correlations between the D/H ratios and the chemical compositions (H2O, K, Si, C/H) of plausible hydrogen carriers were observed. From these correlations, it is possible to show that, contrary to previous interpretations, phyllosilicates are the carriers of the deuterium-rich hydrogen in Semarkona and Renazzo : 870 x10-6 D/H 670 x106 (+4600 dD 3300) and 320 x10-6 (dD 1050), respectively. Hydrogen is also present in the chondrules of these two deuterium-rich meteorites. Isotopic equilibrium between the deuterium depleted phases and the deuterium-rich phyllosilicates was never attained. This is illustrated at a micron scale by the D/H ratios obtained continuously during a 3 hours measurement on a same position (see figure below). It can be seen that water-rich mineral(s) having D/H up to 550 x10-6 (dD = +2500) are in contact with a mineral having D/H = 234 x10-6 (dD = +500). The thickness of the boundary where the diffusion of hydrogen took place is restricted to less than 0.2 mm. Such isotopic heterogeneity is quite spectacular if one remembers that the isotopic variations that we can see within these 0.2 mm are an order of magnitude larger than the total observed variations on Earth. The large differences in D/H ratios between matrix (up to 700 x 10-6, dD up to +3500) and chondrules (from 120 x10-6 (dD = -230) to 230 x10-6 (dD = +475)) show that hydrogen in chondrules cannot originate from the matrix by simple contamination or diffusion processes. The high D/H ratios measured in water bearing minerals could not have been produced thermally within a dense solar nebula. Chemical reactions (i.e. involving ions or radicals), taking place in interstellar space or in the outer regions of the nebula at 110-140K are presently the only conceivable mechanisms capable of yielding such isotopic enrichments. Hydrogen isotopic composition and water concentration versus depth in the matrix of Semarkona. The profile was obtained by sputtering the minerals with the primary beam of the ion-probe (0 stands for the surface mineral). Note the complete lack of isotopic homogenisation between the hydrogen bearing phases : the D/H ratio increases within 0.2 mm by more than 300x10-6; that is one order of magnitude larger than the total variations on Earth. Such a distribution demonstrates that no secondary processes altered the pristine isotopic ratios established at the time of mineral formation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Deuterium-rich Water in Meteorites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Deuterium-rich Water in Meteorites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deuterium-rich Water in Meteorites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-829651

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.