First look at a major transition period in the early Universe

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

In recent years astronomers have successfully `looked back' towards this period, but the new observations of HE 2347-4342 have now homed in on an important transitionary epoch during the evolution of the young Universe.
Searching for clear views towards bright quasars As has been the case for many other important scientific achievements, this observational breakthrough was preceded by a long and tedious period of careful preparatory work. It began in 1989, when Dieter Reimers and his collaborators from the University of Hamburg (Germany) initiated a spectral survey of the entire southern sky with the 1-metre ESO Schmidt Telescope at La Silla. The aim was to find bright quasars, a rare class of remote galaxies with unusually bright and energetic centres. They would then be studied in greater detail with other, larger telescopes.
For this programme, a large objective prism is placed in front of the telescope, allowing the simultaneous recording on a large photographic plate of spectra of about 40,000 celestial objects in a 5o x 5o sky field. The plates are sent to Hamburg where they are scanned (digitized) in a microphotometer and automatically searched for spectra of quasars. Until now, more than 400 plates have been obtained.
One of the main goals of this vast programme is to find bright and distant quasars, in particular those whose light reaches us along relatively unobstructed paths. Or, in other words, those intrinsically bright and remote quasars which are located in directions where the Universe is unusually transparent for ultraviolet light.
With a 'clear view' thus ensured, it would subsequently be possible to study such far-away objects and the intergalactic gas out there in unprecedented detail with large telescopes. The greater the distance, the longer has the light been underway, the longer is the 'look-back' time and the earlier is the epoch about which we then obtain new information.
Discovery of a unique quasar Altogether, more than 650 bright quasars have been discovered during this work so far. In the course of six years, the Hamburg group has managed to find two objects that have a clear view and, in particular, are sufficiently distant to observe intergalactic helium in their lines of sight (only four such quasars are presently known).
The very brightest of these is the quasar HE 2347-4342 in the southern constellation of Phoenix. Its redshift [2] is so high that a specific helium-line in the far-ultraviolet spectral region is shifted into a wavelength region that is observable [3].
[Image at http://www.eso.org/outreach/press-rel/pr-1997/phot-22a-97.html] Caption to ESO PR Photo 22a/97 [JPEG, 41k] ESO PR Photo 22a/97 shows a direct image of HE 2347-4342 at the centre of a 7.5 x 7.5 arcmin2 sky field.
HE 2347-4342 was discovered in October 1995 by Lutz Wisotzki from the University of Hamburg; the `HE' stands for Hamburg-ESO. The visual magnitude is 16.1, i.e. `only' 10,000 times fainter than what can be seen with the naked eye; this makes it one of the apparently brightest quasars in the sky found so far. Still, it is quite distant - the measured redshift is z = 2.885. This places it at a distance that implies a look-back time of more than 80% of the age of the Universe. We thus observe it, as it was, just a few billion years after the Big Bang.
Being so bright in the sky and yet so distant means that HE 2347-4342 must be one of the intrinsically brightest objects in the Universe. In fact, it is no less than 1015 times more luminous than the Sun, or 10,000 times brighter than the entire Milky Way galaxy in which we live.
[Image at http://www.eso.org/outreach/press-rel/pr-1997/phot-22b-97.html] Caption to ESO PR Photo 22b/97 [GIF, 22k] Follow-up observations with the now decommissioned ESA/NASA International Ultraviolet Explorer satellite observatory showed that the light from this quasar travels the long way to us without being significantly absorbed in the ultraviolet spectral region. This is demonstrated in ESO PR Photo 22b/97 which shows its overall spectrum. Note in particular the intensity increase towards the ultraviolet part (to the left in the diagram) due to the unusually `clear view' in this direction.
New observations of HE 2347-4342 have now provided important information, not only about the quasar itself, but especially about the conditions in the surrounding intergalactic medium at this early time.
Early evolution of the Universe There is general agreement among most scientists that the Universe emanated from a hot and extremely dense initial state in the so-called Big Bang. Just three minutes later, the production of enormous quantities of hydrogen and helium nuclei of protons and neutrons came to an end.
Lots of free electrons were moving around and the numerous photons were scattered from these and the `naked' atomic nuclei. After some 100,000 years, the Universe had cooled down to a few thousand degrees and the nuclei and electrons combined to form atoms. The photons were then no longer scattered and the Universe became transparent. Cosmologists refer to this moment as the recombination epoch. The microwave background radiation we now observe from all directions gives a picture of the state of great homogeneity in the Universe at that epoch.
In the next phase the primeval atoms, more than 99% of which were of hydrogen and helium, moved together and began to form huge clouds from which galaxies and stars later emerged. When the first generation of stars and, somewhat later, of quasars, had formed, their intensive ultraviolet radiation began to knock off electrons from the hydrogen and helium atoms. Now the intergalactic gas again became ionized [4] in steadily growing spheres around the ionizing sources. This is the so-called re-ionization epoch.
Is it possible to observe the re-ionization epoch directly? It is believed that a sufficient number of energetic photons to cause re-ionization of most of the primeval hydrogen atoms in intergalactic space had become available at about the time when the first quasars were formed, i.e. when the Universe was less than 10% as old as it is now. This is in agreement with the observations made of the most remote quasars known that show that hydrogen had already been fully ionized at the time we observe them.
However, primeval helium atoms lost the first of their two electrons somewhat later than the hydrogen atoms lost their electron, and the second electron even later. This is because more energy is required to remove the electrons from the helium atom than from a hydrogen atom and because both stars and quasars emit fewer photons at higher energies [5]. Thus, neutral helium atoms in space, formed at the recombination epoch, would survive longer than the hydrogen atoms, and once ionized, the resulting singly ionized helium (He+) would survive even longer. The ionization of helium is therefore delayed as compared to hydrogen.
But for how long? In particular, would He-atoms or He+-ions be around long enough that we would still be able to 'see' pockets of primeval, neutral or singly ionized helium at about the same epoch that we observe some of the most remote quasars?
Helium clouds near HE 2347-4342 This long-standing question can now be answered affirmatively. Astronomers had previously detected clouds of He+-ions in intergalactic space towards three other quasars [3]. Two of these objects are more distant than HE 2347-4342 and one is closer to us. While the two remote objects show very strong He+-absorption, the closer one shows weaker absorption - suggesting that the intergalactic helium has evolved rapidly in the time span that corresponds to the redshifts probed. In HE 2347-4342, whose redshift is intermediate between those of the previous detections, we now observe for the first time the patchiness of the intergalactic matter at the exact time of this major transition phase in the Universe.
The observations of HE 2347-4342 that lead to this important result were difficult and have involved no less than seven different ground- and space-based telescopes.
The new observations of HE 2347-4342 Si

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

First look at a major transition period in the early Universe does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with First look at a major transition period in the early Universe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and First look at a major transition period in the early Universe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-808812

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.